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Abstract In this paper, we will introduce a low concentration trimolecular stochastic
chemical reaction model. We will prove that the solution of the system is positive and
global. And then we draw a conclusion that there is a stationary distribution for the
stochastic system and it has ergodicity under appropriate conditions. Finally, we test
our theory conclusion by simulations. It is interesting that no matter what states the
unique equilibrium of ordinary differential equation model appears, and regardless of
whether the limit cycle exists, our stochastic model is always ergodic.

Keywords Trimolecular chemical reaction · Lyapunov function · Stationary
distribution · Ergodicity

1 Introduction

In history, the earliest report of periodic chemical reactions in the homogeneous solu-
tion is the decomposition of iodate iodine catalyzed the oxidative coupling reaction of
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hydrogen peroxide. The earliest use of mathematical models to predict sustained oscil-
lation is Lotka model. But when the chemical oscillation is regarded as rare examples,
even as it is playing skills, no attention. Since the early nineteen sixties, due to the
discovery of sustained oscillations in the biochemistry reaction, and they have become
an important part of experimental research. At the same time, people pay more and
more attention in the field of mathematical model in order to explain the periodic oscil-
lation phenomena such as ecology, chemical reactor function and biological variety.
For example, Lotka model, Brussel oscillator, Belousov–Zhabotinskii etc.

In this paper, we will introduce a low concentration trimolecular reaction model
which is little different from the famous Brusselator model, its reaction mechanism
is:

A → X
B + X → Y
X + 2Y → 3Y
Y → 0.

Here we assume that all the reaction rate constants are equivalent to 1. In the reaction
process A, B are input chemicals held at constant concentrations far from equilibrium,
denoted by A and B respectively. X, Y are intermediates whose concentration varies
with the reaction time. We record x and y as the concentration of the intermediate
product X and Y , which is all we want to discuss in this paper. In the well-stirred case
and if stochastic fluctuations are neglected the evolution of the concentration of the
intermediate product X and Y can be described by the following nonlinear response
equation:

{ dx
dt = A − Bx − xy2

dy
dt = Bx + xy2 − y

(1.1)

There is one and only one equilibrium P( A
B+A2 , A) of system (1.1). Tyson and Light

[1] show that the system executes relaxation oscillations in the limit B → 0. Linear
stability analysis for this system about the steady state X = A

B+A2 , Y = A yields

by Kauffman and Wille [2]. When 2A2

B+A2 < B + A2 + 1, P is steady focal point or

nodal point. When 2A2

B+A2 > B + A2 + 1, P is unstable focal point or nodal point.

When 2A2

B+A2 = B + A2 + 1, P is stable fine focus. In [3], authors conclude that when
2A2

B+A2 > B + A2 + 1, system (1.1) exists at least one stable limit cycle surrounding
the steady state and discuss the condition of A < 1, B < 0.13.

The reaction mechanism of this model is similar to Prigogine model [4], for which
there is no restriction on the superior limit of parameters. In Prigogine model, it is only
require that A > 0, B > 1. Qualitatively, Prigogine trimolecular model is suitable for
high concentration ranges, yet our model is fit to low concentration ranges.

In fact, chemical reaction models are inevitably affected by environmental white
noise which is an important component in realism, because it can provide an additional
degree of realism in compared to their deterministic counterparts. Recently, we have
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study a stochastic multi-molecule biochemical reaction model in [5]. It is the first
time that we consider the chemical reaction model under stochastic perturbation. The
paper introduces the dynamics of a stochastic multi-molecule biochemical reaction
model by choosing appropriate Lyapunov function. So both from a chemical and a
mathematical perspective, there are different possible approaches to include random
effects in the model (1.1). In this paper, taking into account the effect of randomly
fluctuating environment in system (1.1), we incorporate white noise in order to mod-
elling stochastic chemical reaction model. We introduce stochastic perturbations of
the white noises into the ordinary differential equation model directly, then we obtain
the corresponding stochastic three molecular reaction model:

{
ẋ = A − Bx − xy2 + σ1x Ḃ1(t)
ẏ = Bx + xy2 − y + σ2 y Ḃ2(t)

(1.2)

where B1(t), B2(t) are independent Brownian motions, and σ 2
1 > 0, σ 2

2 > 0 represent
the intensities of white noise.

In Sect. 2, we will prove that the solution of system (1.2) is positive and global. In
Sect. 3, we have a conclusion that for any initial value (x(0), y(0)) ∈ R2+, there is a
stationary distribution for system (1.2) and it has ergodic property under appropriate
conditions. Finally, we test our theory conclusion by simulations in Sect. 4. In this
paper, no matter what state the unique equilibrium of ordinary differential equation
model appears, such as stable focal point or nodal point, unstable focal point or nodal
point, or stable fine focus, and no matter whether the limit cycle exists, our stochastic
model is always has ergodicity. This fact makes us feel very interesting. It seems like
the white noise causes the stochastic system stable.

In this paper, we let (�,F , {Ft }t≥0, P) be a complete probability space with a
filtration {Ft }t≥0 satisfying the usual conditions (i.e. it is right continuous and F0
contains all P-null sets), unless otherwise specified. Denote

Rn+ = {x ∈ Rn : xi > 0 for all 1 ≤ i ≤ n},
R̄n+ = {x ∈ Rn : xi ≥ 0 for all 1 ≤ i ≤ n}.

Generally we consider d-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)d B(t), for t ≥ t0, (1.3)

with initial value x(t0) = x0 ∈ Rn , B(t) denotes d-dimensional standard Brownian
motions defined on the above probability space. Define the differential operator L
associated with Eq. (1.3) by

L = ∂

∂t
+
∑

fi (x, t)
∂

∂xi
+ 1

2

∑[
gT (x, t)g(x, t))

]
i j

∂2

∂xi x j
.
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If L acts on a function V ∈ C2,1(Rn × R+; R+), then

LV (x, t) = Vt (x, t) + Vx (x, t) f (x, t) + 1

2
trace

[
gT (x, t)Vxx (x, t)g(x, t)

]
,

where Vt = ∂V
∂t , Vx = ( ∂V

∂x1
, . . . , ∂V

∂xd
) and Vxx = ( ∂2V

∂xi x j
)d×d . By Itô’s formula, if

x(t) ∈ Sh , then

dV (x(t), t) = LV (x(t), t)dt + Vx (x(t), t)g(x(t), t)d B(t).

2 Existence and uniqueness of the positive solution

Firstly, we show that the solution of system (1.2) is positive and global. For any initial
value to get a unique global solution, i.e, no explosion in a finite time, the coefficients of
the equation are required to satisfy the local Lipschitz condition and the linear growth
condition (cf. Mao [6]). However as the item xy2 is nonlinear, so the coefficients of
system (1.2) do not satisfy the linear growth condition obviously. Thus the solution
may be explore in finite time. In this section, we use the Lyapunov analysis method
to show that the solution of system (1.2) is positive and global as mentioned in Refs.
[7–9].

Theorem 2.1 If σ1, σ2 satisfy

σ 2
1 < 2B, σ 2

2 < 1 (2.1)

then there is a unique solution (x(t), y(t)) of system (1.2) on t ≥ 0 for any initial
value (x(0), y(0)) ∈ R2+, and the solution will remain in R2+ with probability 1, that
is, (x(t), y(t)) ∈ R2+ for all t ≥ 0 almost surely.

Proof Since the coefficients of stochastic differential equation (1.2) are locally Lip-
schitz continuous for any given initial value (x(0), y(0)) ∈ R2+, there exists a unique
local solution (x(t), y(t)) on t ∈ [0, τe), where τe is the explosion time (see Ref. [6]).
We need to proof that τe = ∞ a.s. in order to show this solution is global, Let m0 ≥ 0
be sufficiently large such that x(0) and y(0) all lie within the interval [1/m0, m0]. For
each m ≥ m0, define the stopping time:

τm = in f

{
t ∈ [0, τe) : min {x(t), y(t)} ≤ 1

m
or max {x(t), y(t)} ≥ m

}
.

Throughout this paper, we set in f φ = ∞, as usual φ denotes the empty set. According
to the definition, τm is increasing as m → ∞. Set τ∞ = limm→∞ τm , where τ∞ ≤ τe

a.s. If we can prove that τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t)) ∈ R2+ a.s. for all
t ≥ 0. That is to say, to complete the proof all we need to illustrate is that τ∞ = ∞ a.s.
If it doesn’t hold up, there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε.
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Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T } ≥ ε, for all m ≥ m1. (2.2)

Define a C2-function V : R2+ → R+ by

V (x, y) = (x − 1 − logx) + (y − 1 − logy) + k1
(x + y)2

2

+ k2
x2

2
:= V1 + k2V2 + k3V3.

This function is non-negative for all x, y > 0 because of u − 1 − logu ≥ 0,∀u > 0.

Let m ≥ m0 and T > 0 be arbitrary, using Itô’s formula, we obtain

dV (x, y) = LV dt + σ1(x − 1)d B1(t) + σ2(y − 1)d B2(t)
+ k2(x + y)(σ1xd B1(t) + σ2 yd B2(t)) + k3σ1x2d B1(t).

(2.3)

L is the generating operator of system (1.2) and then we get:

LV1 = (1 − 1
x

)
(A − Bx − xy2) + σ 2

1
2 +

(
1 − 1

y

)
(Bx + xy2 − y) + σ 2

2
2

= − A
x − B x

y − y − xy + y2 + A + B + 1 + σ 2
1
2 + σ 2

2
2

= − A
x − B x

y − y − xy + y2 + H
≤ −y + y2 + H,

(2.4)

where H = A + B + 1 + σ 2
1
2 + σ 2

2
2 . Next

LV2 = (x + y)(A − y) + 1
2 (σ1x + σ2 y)2

≤ Ax + Ay − xy − y2 + σ 2
1 x2 + σ 2

2 y2

≤ Ax + Ay − y2 + σ 2
1 x2 + σ 2

2 y2,

(2.5)

and then

LV3 = Ax − Bx2 − x2 y2 + 1
2σ 2

1 x2

≤ Ax − Bx2 + 1
2σ 2

1 x2,
(2.6)

From the definition of function V and the above three inequalities (2.4)–(2.6), we can
obtain

LV ≤ A(k2 + k3)x −
[

k3

(
B − σ 2

1

2

)
− k2σ

2
1

]
x2 + (k2 A − 1)y

−[k2(1 − σ 2
2 ) − 1]y2 + H. (2.7)
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Due to condition (2.1), we can choose appropriate positive constant k2, k3 such that
the following two inequality

k3

(
B − σ 2

1

2

)
− k2σ

2
1 > 0, k2(1 − σ 2

2 ) − 1 > 0

hold at the same time. Thus according to (2.7) we can conclude that LV ≤ C , where
C is a constant. The remainder proof of this theorem follows that in Ji et al. [10]. �	

3 Ergodicity

Before the proof of the ergodicity, we present a result which can be found in [11]. The
reader can also refer to [12] for details.

Let X (t) be a homogeneous Markov Process in El (El denotes Euclidean l-space)
described by the stochastic equation

d X (t) = b(X)dt +
k∑

r=1

gr (X)d Br (t). (3.1)

and its diffusion matrix is

�(x) = (λi j (x)), (λi j (x)) =
k∑

r=1

gi
r (x)g j

r (x).

Define the differential operator L associated with Eq. (3.1) by

L =
l∑

k=1

bk(x)
∂

∂xk
+ 1

2

l∑
k, j=1

λk j (x)
∂2

∂xk∂x j
.

Lemma 3.1 (See [11]) Assume that there exists a bounded domain U ⊂ El with
regular boundary 
, having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigen-
value of the diffusion matrix �(x) is bounded away from zero.

(B.2) If x ∈ El\U, the mean time τ at which a path issuing from x reaches
the set U is finite, and supx∈K Exτ < ∞ for every compact subset
K ⊂ El .

Then the Markov process X (t) has a stationary distribution μ(·). Let f (·) be a function
integrable with respect to the measure μ. Then

Px

{
lim

T →∞
1

T

∫ T

0
f (X (t))dt =

∫
El

f (x)μ(dx)

}
= 1,

for all x ∈ El .
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Remark 3.1 The proof is given in [11]. The existence of a stationary distribution with
density is given in Theorem 4.1, p. 119 and Lemma 9.4, p. 138. The weak convergence
and the ergodicity are obtained in Theorem 5.1, p. 121 and Theorem 7.1, p. 130. To
validate (B.1), it is enough to prove that F is uniformly elliptical in any bounded
domain D, where Fu = b(x)ux + 1

2 tr(�(x)uxx ), that is, there is a positive number

M such that
∑k

i, j=1 λi j (x)ξiξ j ≥ M |ξ |2, x ∈ D̄, ξ ∈ R
k (see Ref. [13, Chapter 3, p.

103] and Rayleighs principle in [14, Chapter 6, p. 349]). To verify (B.2), it is sufficient
to show that there exists some neighborhood U and a non-negative C2-function such
that, for any El\U , LV is negative (for details refer to [15, p. 1163]).

Lemma 3.2 Let X (t) be a regular temporally homogeneous Markov process in El . If
X (t) is recurrent relative to some bounded domain U, then it is recurrent relative to
any nonempty domain in El .

Remark 3.2 Since the existence of positive solution of model (1.2) has been obtained
by Theorem 2.1, it is enough to take R

2+ as the whole space.

Theorem 3.1 Assume (2.1) satisfy. Then, for any initial value (x(0), y(0)) ∈ R2+,

there is a stationary distribution μ(·) for system (1.2) and it has ergodic property.

Proof To prove this theorem, it is enough for us to verify that (B.1) and (B.2) hold
under condition (2.1). First, system (1.2) can be written as the form of the following
system:

d

(
x
y

)
=
(

A − Bx − xy2

Bx + xy2 − y

)
dt +

(
σ1x

0

)
d B1(t) +

(
0

σ2 y

)
d B2(t)

Here the diffusion matrix is

�(x, y) =
(

σ 2
1 x2 0
0 σ 2

2 y2

)
.

Besides there is M = min{σ 2
1 x2, σ 2

2 y2, (x, y) ∈ Ū } > 0 such that

2∑
i, j=1

λi j (x, y)ξiξ j = σ 2
1 x2ξ2

1 + σ 2
2 y2ξ2

2 ≥ M |ξ |2, all (x, y) ∈ Ū , ξ ∈ R
2,

which implies condition (B.1) is satisfied
Now we need to check condition (B.2). Therefor we will construct a nonnegative
C2-function V and a closed set U ∈∑ (which lies in R

2+ entirely) such that

sup
(x,y)∈R

2+\U

LV (x .y) < 0,

which can assure that (B.2) is satisfied. Consider C2-function h(x, y):

h(x, y) = 1

2
x2 + C1

(x + y)2

2
+ C2(2x + y) − C3(log x + log y), (x, y) ∈ R

2+.
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Take C1, C2, C3 be positive constant such that

C1 = B

σ 2
1

− 1

2
, C3 =

(
B

σ 2
1

− 1

2

)
(1 − σ 2

2 ),

C2 > max

{
A

(
1

σ 2
1

+ 1

2B

)
, A

(
B

σ 2
1

− 1

2

)}
. (3.2)

It is not difficult to check that h(x, y) has a unique minimum point

(
x0,

C3x0
C3−C2x0−x2

0

)
,

where x0 is the root of equation

(C1 + 1)x + C1C3x

C3 − C2x − x2 + 2C2 − C3

x
= 0, x ∈

⎛
⎝0,

√
C2

2 + 4C3 − C2

2

⎞
⎠ ,

and

lim
k→∞ inf

(x,y)∈R
2+\Dk

h(x, y) = +∞,

where Dk = (1/k, k) × (1/k, k). And then, we define a C2-function, which is non-
negative, taking the following form:

V (x, y) = h(x, y) − h

(
x0,

C3x0

C3 − C2x0 − x2
0

)
.

By direct calculation, we obtain that

LV = Ax − Bx2 − x2 y2 + 1
2σ1

2x2 + C1
[
Ax + Ay − xy − y2 + 1

2 (σ1x + σ2 y)2
]

+ C2(2A − y − Bx − xy2)

+ C3

(
− A

x − B x
y − xy + y2 + B + 1 + σ 2

1
2 + σ 2

2
2

)

≤ Ax − Bx2 + 1
2σ1

2x2 + C1(Ax + Ay − y2 + σ 2
1 x2 + σ 2

2 y2)

+ C2(2A − y − Bx)

+ C3

(
− A

x − B x
y + y2 + B + 1 + σ 2

1
2 + σ 2

2
2

)

≤ − [BC2 − A(C1 + 1)] x − (B − 1
2σ1

2 − C1σ
2
1

)
x2

− (C2 − C1 A)y − (C1 − C1σ
2
2 − C3)y2

− C3 A 1
x − C3 B x

y + 2AC2 + C3

(
B + 1 + σ 2

1
2 + σ 2

2
2

)
.

Due to condition (3.2), we choose given value of C1 and C3 such that

B − 1

2
σ1

2 − C1σ
2
1 = 0, C1 − C1σ

2
2 − C3 = 0,
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and the range of constant C2 can guarantee

BC2 − A(C1 + 1) > 0, C2 − C1 A > 0.

Thus, if remark K = 2AC2 + C3(B + 1 + σ 2
1
2 + σ 2

2
2 ), then in term of (2.1) and (3.2)

we can get:

LV ≤ −[BC2 − A(C1 + 1)]x − (C2 − C1 A)y − C3 A
1

x
− C3 B

x

y
+ K . (3.3)

Define a closed set

Uε1,ε2 =
{
(x, y) ∈ R

2+ : ε1 ≤ x ≤ 1

ε1
, ε2 ≤ y ≤ 1

ε2

}
,

where ε1, ε2 are sufficiently small numbers such that

K − C3 A
1

ε1
< −1, (3.4)

K − C3 B
ε1

ε2
< −1, (3.5)

K − [BC2 − A(C1 + 1)] 1

ε1
< −1, (3.6)

K − (C2 − C1 A)
1

ε2
< −1. (3.7)

Furthermore ε2 is a higher order infinitesimal of ε1. That is to say, we should choose
them as the following form:

ε1 = ε0, ε2 = ε2
0,

where ε0 is a positive number which can be sufficiently small.
Denote

D1
ε1,ε2

= {(x, y) ∈ R
2+ : 0 < x < ε1

}
,

D2
ε1,ε2

=
{
(x, y) ∈ R

2+ : ε1 ≤ x ≤ 1
ε1

, 0 < y < ε2

}
,

D3
ε1,ε2

=
{
(x, y) ∈ R

2+ : x > 1
ε1

}
,

D4
ε1,ε2

=
{
(x, y) ∈ R

2+ : y > 1
ε2

}
.

Then R
2+\Uε1,ε2 = D1

ε1,ε2

⋃
D2

ε1,ε2

⋃
D3

ε1,ε2

⋃
D4

ε1,ε2
. Consequently, for any (x, y) ∈

R
2+\Uε1,ε2 we discuss the following four cases:
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Case 1. For any (x, y) ∈ D1
ε1,ε2

,

LV ≤ −C3 A
1

x
+ K < −C3 A

1

ε1
+ K .

We can get LV < −1 on D1
ε1,ε2

, in view of (3.3) and (3.4).

Case 2. On D2
ε1,ε2

,

LV ≤ −C3 B
x

y
+ K < −C3 B

ε1

ε2
+ K ,

we can also get LV < −1 because of (3.3) and (3.5).

Case 3. When (x, y) ∈ D3
ε1,ε2

,

LV ≤ −[BC2 − A(C1 + 1)]x + K < −[BC2 − A(C1 + 1)] 1

ε1
+ K .

Noticing (3.3) and (3.6), we have LV < −1 on D3
ε1,ε2

.

Case 4. On D4
ε1,ε2

,

LV ≤ −(C2 − C1 A)y + K < −(C2 − C1 A)
1

ε2
+ K ,

which indicates LV < −1 in this domain, in virtue of (3.3) and (3.7) hold.
Based on the discuss of the above four kinds of cases, the condition (B.2) in

Lemma 3.1 is also satisfied.
Thus we complete the proof of Theorem 3.1. �	

4 Simulation

In this section, we will test our theory conclusion by simulations. In this paper, we shall
assume that the unit of time is minute and the concentrations of the reactant are mea-
sured in units of mol/L min. Examples 4.1–4.3 are the scatter distribution comparison
diagram of the ordinary differential equation model (1.1) and stochastic differential
equation model (1.2). Examples 4.4–4.6 are the simulations of the stationary distri-
bution histogram. In the following simulations, we all use discretization method and
choose �t = 0.02.

Example 4.1 Choosing the parameters in the system (1.2) as follows:

A = 0.9, B = 0.1, σ1 = 0.2, σ2 = 0.5. (4.1)
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0.8

0.85

0.9

0.95

1

Fig. 1 Computer simulation of the distribution of scatter for stochastic model (1.2) (shown in left side)
and determined model (1.1) (shown in right side) when we choose the value of parameters as (4.1). This
moment equilibrium P(0.989, 0.9) of system (1.1) is a steady focal point or nodal point

1 2 3

0

1

2

3

0.6 0.8 1 1.2 1.4 1.6 1.8

0.6

0.8

1

1.2

Fig. 2 Computer simulation of the distribution of scatter for stochastic model (1.2) (shown in left side)
and determined model (1.1) (shown in right side) when we choose the value of parameters as (4.2). This
moment equilibrium P(1.18644. 0.7) of system (1.1) is a unstable focal point or nodal point, and system
(1.1) exists unique stable limit cycle

Here we can compute that

2A2

B + A2
.= 1.78 < B + A2 + 1 = 1.91,

while the corresponding ordinary differential equation model (1.1) has unique steady
focal point or nodal point P(0.989, 0.9). Choosing initial value (x(0), y(0)) =
(1, 0.8), and then by Matlab, we simulate the scatter distribution of the ordinary
differential model (1.1) and the corresponding stochastic model (1.2). The simulation
result is shown in Fig. 1.

Example 4.2 Here we set the parameters in the system (1.2) as:

A = 0.7, B = 0.1, σ1 = 0.2, σ2 = 0.5. (4.2)

We can compute that

2A2

B + A2
.= 1.66 > B + A2 + 1 = 1.59,
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Fig. 3 Computer simulation of the distribution of scatter for stochastic model (1.2) (shown in left side)
and determined model (1.1) (shown in right side) when we choose the value of parameters as (4.3). This
moment equilibrium P(1.09, 0.79) of system (1.1) is a steady fine focus
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10000

0 500 1000
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1

t

y
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5000
10000

Fig. 4 The solution of the stochastic system and its histogram. The red lines represent the solution of system
(1.2), and the blue lines represent the solution of corresponding undisturbed system (1.1). The pictures on
the right are the histogram of system (1.2) (Color figure online)

while (1.1) has unique unstable focal point or nodal point P(1.18644. 0.7). Keeping
initial value same to Example 4.1 and using the same method, we show the simulation
result in Fig. 2.

Example 4.3 Now we choose the parameters in the system (1.2) as:

A
.= 0.78968778498212758517, B = 0.1, σ1 = 0.2, σ2 = 0.5, (4.3)

such that

2A2

B + A2 = B + A2 + 1.

And then P(1.09, 0.79) is stable fine focus. We show the simulation result in Fig. 3.

Next we will show that system (1.2) has the stationary distribution.

Example 4.4 We choose the parameters in the system (1.2) as:

A = 0.9, B = 0.1, σ1 = σ2 = 0.1, (4.4)

and so the condition σ 2
1 < 2B, σ 2

2 < 1 is also satisfied. Therefore, as Theorem 3.1 said,
there is a stationary distribution (see the histogram on the right in Fig. 4). Furthermore,
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Fig. 5 The solution of the stochastic system and its histogram. The red lines represent the solution of system
(1.2), and the blue lines represent the solution of corresponding undisturbed system (1.1). The pictures on
the right are the histogram of system (1.2) (Color figure online)
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Fig. 6 The solution of the stochastic system and its histogram. The red lines represent the solution of system
(1.2), and the blue lines represent the solution of corresponding undisturbed system (1.1). The pictures on
the right are the histogram of system (1.2) (Color figure online)
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Fig. 7 The solution of the stochastic system and its histogram. The red lines represent the solution of system
(1.2), and the blue lines represent the solution of corresponding undisturbed system (1.1). The pictures on
the right are the histogram of system (1.2) (Color figure online)

we set

A = 0.9, B = 0.1, σ1 = σ2 = 0.05, (4.5)

the simulation result of stochastic system is shown in Fig. 5. The left pictures in Figs. 4
and 5 show that the solution of system (1.2) is fluctuating in a small neighborhood,
and by comparing the two diagrams we can find that the oscillation amplitude of the
stochastic system is reduced with the decrease of white noise.
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Example 4.5 Here we set the parameters in the system (1.2) as:

A = 0.7, B = 0.1, σ1 = σ2 = 0.1, (4.6)

The simulation result of stochastic system is shown in Fig. 6.

Example 4.6 Choosing the parameters in the system (1.2) as

A
.= 0.78968778498212758517, B = 0.1, σ1 = σ2 = 0.1, (4.7)

The simulation result of stochastic system is shown in Fig. 7.
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